Solution:Given equation,
4x² - 2kx + 3k = 0
ln ax² + bx + c = 0,
condition for equal roots isD= 0 i.e., b² - 4ac = 0
For the given equation,
a = 4, b = - 2k and c = 3k
Put b² - 4ac = 0
⇒ (- 2k)² - 4(4)(3k) = 0
⇒ 4k² - 48k = 0
⇒ k² - 12k = 0
⇒ k(k - 12) = 0
k = 0 or k = 12
Hence, the required values of k are 0 and 12.